

Quantifying Classification Uncertainty using Regularized Evidential Neural Networks

Xujiang Zhao¹, Yuzhe Ou¹, Lance Kaplan², Feng Chen¹, Jin-Hee Cho³

¹The University of Texas at Dallas, ²US Army Research Lab, ³Virginia Tech

Archive version available at: https://arxiv.org/pdf/1910.06864

Why is predicting uncertainty important?

Is it important to know:
✓ why we don't know?
✓ how much we don't know?

So how can we predict the uncertainty based on its root cause?

Would it really help for our decision making?

What types of uncertainty to model?

1

2

- *Epistemic* uncertainty (a.k.a. model/parameter uncertainty)
- Measures what model doesn't know
- Due to limited data and knowledge

Aleatoric uncertainty (a.k.a. data uncertainty)

- Measures what you can't understand from the data
- Due to randomness

Vacuity uncertainty (a.k.a. ignorance)

• Measures uncertainty due to a lack of evidence

Dissonance uncertainty

• Measures uncertainty due to **conflicting evidence**

[1] Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NIPS 2017.
 [2] Audun Jøsang, Jin-Hee Cho, and Feng Chen. Uncertainty Characteristics of Subjective Opinions. FUSION 2018.

Evidential Uncertainty

distribution to measure multiple dimensions of uncertainty in classification tasks

Why Evidential Uncertainty?

How to train a model estimating the Dirichlet distribution with evidential uncertainty?

Regularized Evidential Neural Networks for Quantifying Uncertainty

$$\mathcal{L}(\Theta) = \mathbb{E}_{(\mathbf{x}_i, \mathbf{y}_i) \sim \mathcal{D}} [\mathcal{L}(f(\mathbf{x}_i | \Theta), \mathbf{y}_i)] - \lambda_1 \mathbb{E}_{(\mathbf{x}_i, \mathbf{y}_i) \sim \mathcal{D}_{\text{OOD}}} [\text{Vac}(f(\mathbf{x}_i | \Theta))] - \lambda_2 \mathbb{E}_{(\mathbf{x}_i, \mathbf{y}_i) \sim \mathcal{D}_{\text{BOD}}} [\text{Diss}(f(\mathbf{x}_i | \Theta))]$$

- Define the outlier samples for testing OOD
- Minimize the loss function by maximizing vacuity for OOD and dissonance for boundary samples, in addition to the normal loss function to maximize prediction accuracy.

Quantifying vacuity and dissonance under different ENN models

0.90

0.30

0.00

1.05

0.90

0.75

0.60

0.45

0.30

0.15

0.00

(a) Vacuity contour (ENN model)

(c) Vacuity contour map (ENN-Vac model)

(b) Dissonance contour map (ENN model)

(d) Dissonance contour map (ENN-Vac-Diss model)

Setting:

- Generated a synthetic dataset with three classes: red, orange, and white.
- Under a given NN model, we sampled 1000 points of each class based on the Gaussian distribution in a 2-D space.
- We used 200 total OOD samples to train regularized-ENN models.

Results:

Under regularized-ENN • models, high vacuity in OOD region and high dissonance on in-class boundary are observed.

OOD Detection vs. Entropy

Setting:

10 classes of Cifar10 dataset are divided in 3 groups: {airplane, automobile, bird, cat, deer}: training and validation {ship, truck}: OOD training {dog, frog, horse}: OOD detection test

Result:

- Right most corner is more desirable in OOD (higher entropy is associated with higher OOD detection)
- Higher vacuity (e.g., ENN-Vac with green; ENN-Vac-Diss with red) is obviously related to higher OOD.
- The proposed **regularized-ENN models show clearer uncertainty effect in OOD detection** than the baseline models.

Conclusions

- We proposed regularized Evidential Neural Networks (ENN) considering evidential uncertainty, vacuity and dissonance.
- We showed anticipated predictive measurements of vacuity and dissonance in our proposed ENN-Vac and ENN in out-of-distribution (OOD) and boundary samples.
- We validated the outperformance of our proposed method (i.e., ENN-Vac-Diss) over other schemes in terms of the performance in the OOD detection task.
- We bridged a belief/evidence model with deep learning to predict multidimensional uncertainty.

- Why is predicting uncertainty important?
- What is knowing an extent of uncertainty useful for decision making?
- What types of uncertainty are more important than others?
 - o Is lack of information better than wrong information?
 - o Is perceiving high uncertainty better than misclassification?

Any Question & Comments?

Jin-Hee Cho, CS@VT jicho@vt.edu